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Abstract

As part of George B. Moody Physionet Challenge 2022,
our team Melbourne Kangas, proposed an algorithm for
identifying abnormal heart sounds from paediatric phono-
cardiograms (PCGs). We developed a Deep Learning (DL)
approach and a handcrafted feature-based approach. The
DL classifier was based on bidirectional long-short-term-
memory and Mel-frequency cepstrum coefficients from raw
PCG signals. The feature-based approach used non-
negative matrix factorisation to denoise PCG signals and
then extracted the features based on the whole and seg-
mented recordings, followed by feature selection. A ran-
dom under-sampling boosting classifier for murmur classi-
fication and robust boosting classifier for outcome classifi-
cation were given the subset of features. The feature-based
performed better than the DL classifiers on the validation
set. The feature-based classifier received a weighted ac-
curacy of 0.632 (29th out of 41 teams) and a challenge
cost of 11,735 (3rd out of 39 teams) on the test set. Deci-
sion fusion of the two approaches decreased 10-fold cross-
validation results.

1. Introduction

To diagnose patients with cardiovascular disease
(CVD), clinicians may use heart auscultation to screen for
cardiac diseases in phonocardiograms (PCGs) as it is non-
invasive and provides information on congenital and ac-
quired CVDs [1]. Technology for observing cardiac activ-
ity has improved; however, studies were limited by insuffi-
cient datasets. The new dataset released for the challenge,
CirCor DigiScope Phonocardiogram Dataset, hopes to fill
the need for a paediatric heart sound dataset with compre-
hensive patient information [1, 2]. This paper presents a
Deep Learning (DL) based classification using Long Short
Term Memory (LSTM) and a feature-based classifier to
perform heart sound classification as part of the George

B. Moody Physionet Challenge[1, 2].

2. Methods

The high-level flowchart of the proposed method is pre-
sented in Figure 1. Both DL Method (Section 2.2) and
Feature-Based Method (Section 2.3) were implemented
and evaluated, then fused as specified in Section 2.4

2.1. Dataset

The dataset was divided into ten folds for cross-
validation. Due to having follow-up patients in the second
data collection, duplicate patient recordings were kept to-
gether[1, 2]. Each fold contained an even distribution of
patients with murmur present, absent or unknown per age
group where possible. After these folds were created with
respect to murmur labels, the distribution was checked for
outcome labels and was approximately balanced between
Normal and Abnormal coincidentally. All samples were
recorded at a sample rate of 4000 Hz [1, 2].

2.2. Deep Learning-Based Method

2.2.1. Preprocessing

Imbalance among the murmur classes was accounted for
using random undersampling of the most prevalent class
(Absent) and random oversampling of the least prevalent
class (Unknown) to match the number of patients in the
Present Class. Non-segmented audio was used as input
similar to previous works [3]. PCG signals were sam-
pled in 10-second segments with additional zero-padding
where required. The location of the recording was ig-
nored. 25 Mel-Frequency Cepstral Coefficients (MFCC)
were extracted as suggested by Sitaula et al. [4]. The
mean was taken over the temporal dimension forming a
one-dimensional MFCC input to the classifier.
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Figure 1. Process of Decision-Fusion of DL-Based Method (Section 2.2) and Feature-Based Method (Section 2.3) with an
input of multiple PCG Recordings and Patient Information.

2.2.2. Neural Network Architecture

Two variations of computationally light one-dimensional
Convolutional Neural Networks with Long Short Term
Memory (1D CNN-LSTM) were trialled. The base CNN
contains convolution kernels of size 8 and then 4 consec-
utively with Rectified Linear Unit (ReLU) activation func-
tion. Variations include the addition of an attention mech-
anism or bidirectionality in the LSTM (Bi-LSTM) [3].

2.2.3. Parameter Selection

Training parameters were manually selected based on
training performance curves when changing learning rate,
batch size and max epochs. The chosen parameters were
1.00E-06, 32 and 250 respectively. All training used early
stopping mechanism based on decreasing validation accu-
racy with patience of 30 epochs to prevent over-fitting.

2.3. Feature-Based Method

2.3.1. Preprocessing

To remove noise such as lung sounds, and the envi-
ronment, we used the sound separation method devel-
oped in our previous work [5]. This method implements
non-negative matrix factorisation (NMF) with a reference
database of clean heart and noise sounds, to separate the
PCG recording into these respective components [5]. The
PCG recording was represented in the time-frequency do-
main using Short-time Fourier transform with a window
size of 512 samples, hop size of 256 samples and a Fast
Fourier transform size of 1024 points. Sound separation
using NMF, Kullback-Leibler divergence with a sparsity

of 0.1 was used in the cost function and 20 basis compo-
nents for each heart, and noise sound, respectively [5].

2.3.2. Feature Extraction

Firstly, patient information of age, sex, height, and
weight were extracted and used as features.

Then features were obtained from both the whole and
the segmented heart PCG. Segmentation refers to segment-
ing the PCG into cardiac cycles, i.e. S1, systole, S2, and
diastole. Heart segmentation was performed using a Hid-
den Semi-Markov Model, which takes into account heart
rate range based on age group, which were (1) Neonate:
110-200 bpm, (2) Infant: 70-200 bpm, (3) Child: 60-
170 bpm, (4) Adolescent: 40-170 bpm, (5) Young Adult:
40-130 bpm and (5) Unknown: 50-160 bpm [6].

Based on our past work on PCG signal quality, five
types of features were extracted from the whole record-
ings, (1) statistical: variance, skewness and kurtosis of au-
dio/autocorrelation signal, (2) entropy: sample, Shannon,
Renyi and Tsallis, (3) power features: total power, various
power ratios between 100-1000 Hz, 3 dB bandwidth, 1st,
2nd and 3rd quartiles as well as interquartile range, stan-
dard deviation, mean frequency, power centroid and max
power, (4) MFCCs: minimum, maximum, mean, median,
mode, variance and skewness of a 13-level decomposition
in Mel scale and log energy with a window length of 25 ms
and overlap length of 15 ms (5) autocorrelation: correla-
tion prominence, sinusoid correlation and Hjorth activity
to measure the strength of the signal periodicity [6]. The
same features were extracted from segmented signals and
averaged for each segment i.e., S1, systole, S2, diastole.

Features based on the best performing models in Phy-
sioNet 2016 Challenge for detection of abnormal heart
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sounds, were also extracted [7–10].

2.3.3. Feature Selection

Due to the small dataset in comparison to the number
of features extracted, only a subset of features were used
to minimise over-fitting. Based on preliminary results, the
maximum Relevance Minimum Redundancy (mRMR) al-
gorithm with the mutual information quotient method was
used for murmur-based classification [11]. Whereas the
Chi-square test (χ2), which ranked according to p-values,
was used for outcome-based classification.

Overall, the top 1-100 features were considered and
tested based on the 10-fold cross-validation. The results
plateaued around the 40 feature mark, with peak perfor-
mance using the top 50 features, as reported in Section 3.

2.3.4. Ensemble Classifier Training

Training set features were normalised per fold, with the
same scaling and shifting used on the test set features. For
murmur-based classification, the following ensemble clas-
sifiers were considered: Random Undersampling Boosting
(RUSBoost), Bootstrap Aggregation, Adaptive Boosting,
Linear Programming Boosting, Totally Corrective Boost-
ing, and Random Subspace Ensemble. For outcome-based
classification, the same set of classifiers were considered
in addition to Gentle Adaptive Boosting, Adaptive Logis-
tic Regression and Robust Boosting.

Decision tree classifiers were used as weak learners for
all classifiers except for subspace, which used discriminant
analysis. Using 10-fold cross-validation within the train-
ing fold with Bayesian optimisation, the following param-
eters were optimised when applicable (1) Learning Rate,
(2) Number of Learning Cycles, and (3) Minimum Leaf
Size for the Base Decision Tree Learner.

For murmur classification, there was a noticeable class
imbalance. As demonstrated in our preliminary results,
RUSBoost was the best-performing ensemble classifier,
which is designed to deal with imbalanced datasets us-
ing a combination of random undersampling/oversampling
[12]. In RUSBoost, each weak learner is trained on a sam-
pling proportion of recordings with respect to the lowest-
represented class, that is, the number of recordings in the
unknown murmur class. The Absent:Present:Unknown
ratios tested were: (1) 1:1:1, (2) 2:2:2, (3), 3:3:3, (4)
2.5:2.5:1 and (5) 0.75:0.75:0.75.

Finally, the cost function for murmur-based classifica-
tion was based on the stated competition weight accu-
racy, with Absent:Present:Unknown cost ratio being 1:5:3.
Whereas the cost function for outcome-based classification
was such that Abnormal:Normal cost ratio was 10:1.

Training Validation Test Ranking
0.643± 0.0621 0.626 0.632 29/41
0.600± 0.1232 0.460 NA NA
0.435± 0.1752∗ NA NA NA
0.678± 0.1803 0.412 NA NA
0.524± 0.1173∗ NA NA NA

Table 1. Murmur Detection Task Results. Weighted accu-
racy metric scores (official Challenge score) for the official
test phase. Our final selected entry is in bold (team Mel-
bourne Kangas), including the ranking of our team on the
hidden test set. We used 10-fold cross-validation on the
public training set and one-time scoring on the hidden val-
idation set and hidden test set. 1 Feature-Based Model, 2

CNN Bi-LSTM, 3 CNN LSTM with Attention, ∗ Fusion
Results

Training Validation Test Ranking
11,859± 1,1901 9420 11,735 3/39
11, 958± 2, 3592 11364 NA NA
13, 897± 2, 8562∗ NA NA NA
11, 263± 3, 2323 12616 NA NA
13, 897± 3, 9193∗ NA NA NA

Table 2. Clinical Outcome Identification Task. Cost met-
ric scores (official Challenge score) for the official test
phase. Our final selected entry is in bold (team Melbourne
Kangas, including the ranking of our team on the hidden
test set. We used 10-fold cross-validation on the public
training set and one-time scoring on the hidden validation
set and hidden test set.1 Feature-Based Model, 2 CNN Bi-
LSTM, 3 CNN LSTM with Attention, ∗ Fusion Results

2.4. Voting Method

The probabilistic outputs were combined using voting
methodologies to choose a classification per patient.
• Mean Probabilistic Maximum: All probabilistic outputs
were condensed by taking the mean, and a final label was
chosen based on the resulting maximum.
• Conditional Mean Probabilistic Maximum: Each proba-
bilistic output was checked for a condition (either murmur
present or abnormal outcome). If the condition is met, the
final label will be equal to the condition, otherwise, the
mean probabilistic maximum is selected.
• Majority Voting: Each probabilistic output is equivo-
cated to a label, and the most frequent label is selected.

3. Results

The CNN LSTM with attention for murmur classifi-
cation outperformed the feature-based method in cross-
validation but with high variation, although had a poor
performance on the hidden validation set as shown in Ta-

Page 3



ble 1. On outcome classification, the feature-based model
performed best on both sets as shown in Table 2. For the
feature-based model, the best model for murmur classifica-
tion was RUSBoost with an Absent:Present:Unknown ra-
tio of 2.5:2.5:1 and majority voting. Whereas the best out-
come classification model was robust boosting with Con-
ditional Mean Probabilistic Maximum. For both DL and
fusion voting methods, the Mean Probabilistic Maximum
was found to be most effective. All fusion results show
decreased performance. Based on hidden validation set
results, the feature-based model performed best and was
submitted for evaluation on the hidden test set.

4. Discussion and Conclusions

The DL method showed high variation in cross-
validation and the hidden validation set. This variation
may be due to under-fitting as the model may be over-
simplified. Our LSTM layer contains 16 units, whereas
Fernando et al.[3] used 80. Increasing complexity using
2D MFCCs would likely improve performance as it would
include the temporal dimension. More fine-tuning is re-
quired to increase convergence and decrease the high vari-
ation between folds. Mean Probabilistic Output performed
best for the DL model likely due to the 10-second segment
instead of per recording. The likelihood of classifying as
Murmur Present or Abnormal is higher when applying the
condition on more recordings.

For feature-based murmur classification, due to the class
imbalance, the RUSBoost classifier was most suitable, as
shown by superior results. The rationale for the 2.5:2.5:1
ratio performing best is a combination of the murmur
present class being the strongest weight in the weighted ac-
curacy, and the unknown class being relatively rare. There-
fore, it was appropriate to downsample the absent class
to the size of the present class to maximise the train-
ing set for each weak learner. For outcome classifica-
tion, there is minimal class imbalance. Robust boosting
avoids over-concentration on a few misclassified observa-
tions that can occur in other boosting algorithms, and in-
stead maximises the number of observations with a clas-
sification margin above a certain threshold [13]. Condi-
tional Mean Probabilistic Maximum voting method per-
forming the best makes sense as the competition cost func-
tion places a strong weighting on correctly identifying ab-
normal over normal class.

All fusion results show decreased performance com-
pared to individual classifiers. Due to variation in the deep-
learning model and fusion, the results are not conclusive.
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